RMIT University
Browse

Metal–Organic Framework–Derived Mesoporous B-Doped CoO/Co@N-Doped Carbon Hybrid 3D Heterostructured Interfaces with Modulated Cobalt Oxidation States for Alkaline Water Splitting

journal contribution
posted on 2024-11-03, 09:50 authored by Dun Cha, Thangjam Ibomcha Singh, Ashakiran Maibam, Tae Kim, Dong Nam, Ravichandar BabaraoRavichandar Babarao, Seunghyun Lee
Heteroatom-doped transition metal-oxides of high oxygen evolution reaction (OER) activities interfaced with metals of low hydrogen adsorption energy barrier for efficient hydrogen evolution reaction (HER) when uniformly embedded in a conductive nitrogen-doped carbon (NC) matrix, can mitigate the low-conductivity and high-agglomeration of metal-nanoparticles in carbon matrix and enhances their bifunctional activities. Thus, a 3D mesoporous heterostructure of boron (B)-doped cobalt-oxide/cobalt-metal nanohybrids embedded in NC and grown on a Ni foam substrate (B-CoO/Co@NC/NF) is developed as a binder-free bifunctional electrocatalyst for alkaline water-splitting via a post-synthetic modification of the metal–organic framework and subsequent annealing in different Ar/H2 gas ratios. B-CoO/Co@NC/NF prepared using 10% H2 gas (B-CoO/Co@NC/NF [10% H2]) shows the lowest HER overpotential (196 mV) and B-CoO/Co@NC/NF (Ar), developed in Ar, shows an OER overpotential of 307 mV at 10 mA cm−2 with excellent long-term durability for 100 h. The best anode and cathode electrocatalyst-based electrolyzer (B-CoO/Co@NC/NF (Ar)(+)//B-CoO/Co@NC/NF (10% H2)(−)) generates a current density of 10 mA cm−2 with only 1.62 V with long-term stability. Further, density functional theory investigations demonstrate the effect of B-doping on electronic structure and reaction mechanism of the electrocatalysts for optimal interaction with reaction intermediates for efficient alkaline water-splitting which corroborates the experimental results.

History

Journal

Small

Volume

19

Number

2301405

Issue

35

Start page

1

End page

17

Total pages

17

Publisher

Wiley-VCH Verlag GmbH & Co. KGaA

Place published

Germany

Language

English

Copyright

© 2023 Wiley-VCH GmbH

Former Identifier

2006124788

Esploro creation date

2024-03-15