RMIT University
Browse

Molecular dynamics simulations highlight the altered binding landscape at the spike-ACE2 interface between the Delta and Omicron variants compared to the SARS-CoV-2 original strain

journal contribution
posted on 2024-11-02, 21:52 authored by Eleni PitsillouEleni Pitsillou, Julia Liang, Raymond Beh, Andrew HungAndrew Hung, Tom Karagiannis
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 variant (Omicron), represents a significant deviation in genetic makeup and function compared to previous variants. Following the BA.1 sublineage, the BA.2 and BA.3 Omicron subvariants became dominant, and currently the BA.4 and BA.5, which are quite distinct variants, have emerged. Using molecular dynamics simulations, we investigated the binding characteristics of the Delta and Omicron (BA.1) variants in comparison to wild-type (WT) at the interface of the spike protein receptor binding domain (RBD) and human angiotensin converting enzyme-2 (ACE2) ectodomain. The primary aim was to compare our molecular modelling systems with previously published observations, to determine the robustness of our approach for rapid prediction of emerging future variants. Delta and Omicron were found to bind to ACE2 with similar affinities (−39.4 and −43.3 kcal/mol, respectively) and stronger than WT (−33.5 kcal/mol). In line with previously published observations, the energy contributions of the non-mutated residues at the interface were largely retained between WT and the variants, with F456, F486, and Y489 having the strongest energy contributions to ACE2 binding. Further, residues N440K, Q498R, and N501Y were predicted to be energetically favourable in Omicron. In contrast to Omicron, which had the E484A and K417N mutations, intermolecular bonds were detected for the residue pairs E484:K31 and K417:D30 in WT and Delta, in accordance with previously published findings. Overall, our simplified molecular modelling approach represents a step towards predictive model systems for rapidly analysing arising variants of concern.

History

Journal

Computers in Biology and Medicine

Volume

149

Number

106035

Start page

1

End page

12

Total pages

12

Publisher

Elsevier

Place published

United Kingdom

Language

English

Copyright

© 2022 Elsevier Ltd. All rights reserved.

Former Identifier

2006118556

Esploro creation date

2023-01-30

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC