RMIT University
Browse

Molecular functionality of plant proteins from low-to high-solid systems with ligand and co-solute

journal contribution
posted on 2024-11-02, 12:48 authored by Vilia Darma Paramita, Naksit Panyoyai, Stefan KasapisStefan Kasapis
In the food industry, proteins are regarded as multifunctional systems whose bioactive hetero-polymeric properties are affected by physicochemical interactions with the surrounding components in formulations. Due to their nutritional value, plant proteins are increasingly considered by the new product developer to provide three-dimensional assemblies of required structure, texture, solubility and interfacial/bulk stability with physical, chemical or enzymatic treatment. This molecular flexibility allows them to form systems for the preservation of fresh food, retention of good nutrition and interaction with a range of microconstituents. While, animal-and milk-based proteins have been widely discussed in the literature, the role of plant proteins in the development of functional foods with enhanced nutritional profile and targeted physiological effects can be further explored. This review aims to look into the molecular functionality of plant proteins in relation to the transport of bioactive ingredients and interaction with other ligands and proteins. In doing so, it will consider preparations from low-to high-solids and the effect of structural transformation via gelation, phase separation and vitrification on protein functionality as a delivery vehicle or heterologous complex. Applications for the design of novel functional foods and nutraceuticals will also be discussed.

History

Related Materials

  1. 1.
    DOI - Is published in 10.3390/ijms21072550
  2. 2.
    ISSN - Is published in 16616596

Journal

International Journal of Molecular Sciences

Volume

21

Number

2550

Issue

7

Start page

1

End page

25

Total pages

25

Publisher

MDPI AG

Place published

Switzerland

Language

English

Copyright

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Former Identifier

2006099334

Esploro creation date

2020-09-08

Usage metrics

    Scholarly Works

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC