This paper describes the formation of self-organized nanopores in thin films of titanium prepared using a Filtered Cathodic Vacuum Arc (FCVA) deposition system. The post-deposition anodization was performed using 0.5% (wt) NH4F in ethylene glycol and an aqueous based solution containing 0.5% (wt) NH4F and 1 M (NH4)2SO4 electrolytes. Homogenously distributed nanopores with dimensions in the range of 10 to 20 nm were obtained. Nanoporous TiO2 thin films were obtained after annealing the anodized samples at 600°C for 4 h. Scanning electron microscopy (SEM) and Raman spectroscopy were used to characterize these nanoporous films. Raman measurements revealed that the rutile TiO2 polymorph dominates these structures along with imperfect titanium oxidation resulting in the formation of defect structures, particularly when aqueous electrolyte was used for the anodization.