RMIT University
Browse

On the Impact of Surface Morphology and Transfer Film on Brake System Performance of High-Capacity Metro Train

journal contribution
posted on 2024-11-02, 20:49 authored by Chi Yang, Haicheng Yan, Qilin Chen, Yongke Liu, Neng Zhang
The brake system of Melbourne’s High-Capacity Metro Train (HCMT) suffers from consistently extended braking distances after repeating a set of high-speed tests and the commission process. The degradation of brake system performance affects the safety of rolling stock and its conformance to the design standard. In this paper, the root cause leading to the degraded brake performance was analyzed. The brake discs and brake pads of the affected train and another train with normal working conditions were removed and a series of examinations was to determine the reason for the change of friction coefficient between friction surfaces. The results revealed that brake disc samples from the affected TS02 trainset suffered from changed transfer film and surface morphology after multiple consecutive high-speed braking applications. The factors that may affect the brake system performance were analyzed in the laboratory. It was found the brake disc surface had a lower hardness level, coefficient of friction, and smaller contacting area with the brake pad when compared to the brake disc and pad samples from another trainset. These factors harmed the performance of the braking system, and the decrease in the braking effort led to a longer braking distance than expected and failed braking tests.

History

Journal

Coatings

Volume

12

Number

894

Issue

7

Start page

1

End page

11

Total pages

11

Publisher

MDPI

Place published

Switzerland

Language

English

Copyright

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Former Identifier

2006116684

Esploro creation date

2022-10-21

Usage metrics

    Scholarly Works

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC