On the conjecture by Demyanov-Ryabova in converting finite exhausters
journal contribution
posted on 2024-11-03, 15:25authored byTian Sang
The Demyanov-Ryabova conjecture is a geometric problem originating from duality relations between nonconvex objects. Given a finite collection of polytopes, one obtains its dual collection as convex hulls of the maximal facet of sets in the original collection, for each direction in the space (thus constructing upper convex representations of positively homogeneous functions from lower ones and, vice versa, via Minkowski duality). It is conjectured that an iterative application of this conversion procedure to finite families of polytopes results in a cycle of length at most two. We prove a special case of the conjecture assuming an affine independence condition on the vertices of polytopes in the collection. We also obtain a purely combinatorial reformulation of the conjecture.
Funding
Geometry and Conditioning in Structured Conic Problems