The shape-morphing behaviours of some biological systems have drawn considerable interest over many years. This paper divulges that the opening and closing mechanism of pine cones is attributed to the self-bending of their scales, which undergo three states of humidity-driven deformation in terms of Föppl-von Kármán plate theory. Both numerical simulation and experimental measurement support the theoretical analysis, showing that the longitudinal principal curvature and the transverse principal curvature bifurcate at a critical humidity level according to the thickness and shape of scales. These findings help us understand the shape transformation of bilayer or multi-layer natural structures and gain insights into the design of transformable devices/materials with great potential in numerous applications.