Preliminary evaluation of electroencephalographic entrainment using thalamocortical modelling
journal contribution
posted on 2024-11-01, 07:31authored byDean Cvetkovic, Robert Powers, Irena CosicIrena Cosic
The concept of linked oscillators in biological control systems has long been established. Frequency entrainment is a predominant explanation behind many biological rhythms. In this paper a preliminary examination of electroencephalographic entrainment is made to survey the possibility and methods of achieving signal entrainment at the highest level of neurological organization and function. A model of the thalamocortical system is employed to generate simulated electroencephalographic signals and is tested in various configurations in the search for entrainment under very simple conditions. Additionally, an analysis of the coupled Van der Pol model of the circadian rhythm controller is performed to identify the possibility of affecting that system with a drastically different coupling input signal. We were able to conclude that overall signal shape can have a significant impact on the entrainment characteristics of the system. Due to the nature of the underlying mathematical structure of the model, by examining the circadian rhythm controller, we found that it is unsuitable for entrainment to an incident entraining signal of much higher frequency.