RMIT University
Browse

Preparation and antifouling property of polyurethane film modified by chondroitin sulfate

journal contribution
posted on 2024-11-02, 05:41 authored by Huihui Yuan, Jing Xue, Bin Qian, Huaying Chen, Yonggang Zhu, Minbo Lan
An antifouling polyurethane film modified by chondroitin sulfate (PU-CS) was prepared by chemical grafting with N-Boc-1,3-propanediamine as a spacer. The different mass fraction of N-Boc-1,3-propanediamine was investigated to obtain PU-CS films with different CS grafting density. The surface properties of PU-CS films were comprehensively characterized. Proteins adsorption and glycosaminoglycans adhesion on films were evaluated. Moreover, inorganic salt deposition on film with highest CS grafting density (3.70 μg/cm 2 ) was briefly investigated. The results showed that the increase of CS grafting density improved not only the hydrophilicity but the antifouling performance of films. The best antifouling film reduced the adsorption of fibrinogen (BFG), human serum albumin (HSA) and lysozyme (LYS) by 81.4%, 95.0% and 76.5%, respectively, and the adhesion of chondroitin (CS), heparin (HP) and hyaluronic acid (HA) by 70.6%, 87.4% and 81.3%, respectively. In addition, the co-adsorption of proteins and glycosaminoglycans reduced up to 86.9% and 75.5%, respectively. Changes in inorganic salt deposition after co-adsorption of proteins and glycosaminoglycans on PU-CS(3) suggested that the proteins promoted the inorganic salt deposition, while glycosaminoglycans inhibited the crystal growth. The negatively charged polysaccharides might promote the generation of smaller crystals which could be conducive to provide theoretical and practical guide to develop novel urinary stents with significant anti-encrustation properties.

History

Journal

Applied Surface Science

Volume

394

Start page

403

End page

413

Total pages

11

Publisher

Elsevier

Place published

Netherlands

Language

English

Copyright

© 2016 Elsevier B.V. All rights reserved.

Former Identifier

2006078905

Esploro creation date

2020-06-22

Fedora creation date

2019-03-26

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC