RMIT University
Browse

Primary and secondary resonances of functionally graded graphene platelet-reinforced nanocomposite beams

journal contribution
posted on 2024-11-01, 17:17 authored by Xiaoqian Li, Mitao Song, Jie YangJie Yang, Sritawat Kitipornchai
The present study investigated the nonlinear harmonic vibration of functionally graded multilayer graphene nanoplatelet (GPL)-reinforced nanocomposite beams on the basis of the third-order shear deformation theory. The GPL volume fraction shows a layer-wise change, while in each individual layer GPLs are uniformly dispersed in the matrix. The effective Young’s moduli of the GPL-reinforced nanocomposite (GPLRC) beams were estimated through the Halpin–Tsai micromechanics model. The mass densities as well as the effective Poisson’s ratios of the GPLRC beams were predicted by the rule of mixture. The nonlinear partial differential equations of motion were discretized by means of the Galerkin procedure. A parametric study was carried out by using the multiple scales method to examine the effects of GPL distribution pattern, weight fraction, geometry, and size on the nonlinear response of the primary, secondary, and combination resonances. Results show that an addition of a very low weight fraction of GPL nanofillers significantly reduces the primary, superharmonic, subharmonic, and combinational resonant responses of the beams. The square-shaped GPLs with fewer graphene layers are the most favorable reinforcements.

Funding

Thermal Upheaval Buckling of Functionally Graded Pavement Slabs

Australian Research Council

Find out more...

Buckling of Functionally Graded Multilayer Graphene Nanocomposites

Australian Research Council

Find out more...

History

Related Materials

  1. 1.
    DOI - Is published in 10.1007/s11071-018-4660-9
  2. 2.
    ISSN - Is published in 0924090X

Journal

Nonlinear Dynamics

Volume

95

Issue

3

Start page

1807

End page

1826

Total pages

20

Publisher

Springer

Place published

Netherlands

Language

English

Copyright

© Springer Nature B.V. 2018

Former Identifier

2006093308

Esploro creation date

2020-06-22

Fedora creation date

2019-08-22

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC