RMIT University
Browse

Quantum Chemistry-Machine Learning Approach for Predicting Properties of Lewis Acid-Lewis Base Adducts

journal contribution
posted on 2024-11-03, 09:42 authored by Hieu Huynh, Thomas Kelly, Linh Vu, Tung Hoang, Phuc Nguyen, Tu LeTu Le, Emily Jarvis, Hung Phan
Synthetic design allowing predictive control of charge transfer and other optoelectronic properties of Lewis acid adducts remains elusive. This challenge must be addressed through complementary methods combining experimental with computational insights from first principles. Ab initio calculations for optoelectronic properties can be computationally expensive and less straightforward than those sufficient for simple ground-state properties, especially for adducts of large conjugated molecules and Lewis acids. In this contribution, we show that machine learning (ML) can accurately predict density functional theory (DFT)-calculated charge transfer and even properties associated with excited states of adducts from readily obtained molecular descriptors. Seven ML models, built from a dataset of over 1000 adducts, show exceptional performance in predicting charge transfer and other optoelectronic properties with a Pearson correlation coefficient of up to 0.99. More importantly, the influence of each molecular descriptor on predicted properties can be quantitatively evaluated from ML models. This contributes to the optimization of a priori design of Lewis adducts for future applications, especially in organic electronics.

History

Journal

ACS Omega

Volume

8

Issue

21

Start page

19119

End page

19127

Total pages

9

Publisher

American Chemical Society

Place published

United States

Language

English

Copyright

© 2023 The Authors.

Former Identifier

2006124470

Esploro creation date

2023-08-16

Usage metrics

    Scholarly Works

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC