RMIT University
Browse

Recent development in graphdiyne and its derivative materials for novel biomedical applications

journal contribution
posted on 2024-11-02, 19:02 authored by Karim Khan, Ayesha Tareen, Muhammad Iqbal, Nasir MahmoodNasir Mahmood
Graphdiyne (GDY), which possess sp-and sp2-hybridized carbon and Dirac cones, offers unique physical and chemical properties, including an adjustable intrinsic bandgap, excellent charge carrier transfer efficiency, and superior conductivity compared to other carbon allotropes. These exceptional qualities of GDY and its derivatives have been successfully used in a variety of fields, including catalysis, energy, environmental protection, and biological applications. Herein, we focus on the potential application of GDY and its derivatives in the biomedical domain, including biosensing, biological protection, cancer therapy, and antibacterial agents, demonstrating how the biomimetic behavior of these materials can be a step forward in bridging the gap between nature and applications. Considering the excellent biocompatibility, solubility and selectivity of GDY and its derived materials, they have shown great potential as biosensing and bio-imaging materials. The unusual combination of properties in GDY has been used in biological applications such as "OFF-ON"DNA detection and enzymatic sensing, where GDY has a greater adsorption capacity than graphene and other 2D materials, resulting in increased sensitivity. GDY and its derivatives have also been used in cancer treatment due to their high doxorubicin (DOX) loading capacity (using-stacking) and photothermal conversion ability, and radiation protection since their initial biological use. The poor biodegradation rate of graphene demands the search for new nanomaterials. Accordingly, GDY has better biocompatibility and bio-safety than other 2D nanomaterials, especially graphene and its oxide, due to its absence of aggregation in the physiological environment. Thus, GDY-based nanomaterials have become promising candidates as bio-delivery carriers. Besides, GDY and GDY-based materials have also shown interesting applications in the fields of cell-culture, cell-growth and tissue engineering. Herein, we present a comprehensiv

History

Journal

Journal of Materials Chemistry B

Volume

9

Issue

46

Start page

9461

End page

9484

Total pages

24

Publisher

Royal Society of Chemistry

Place published

United Kingdom

Language

English

Copyright

This journal is © The Royal Society of Chemistry 2021

Former Identifier

2006113493

Esploro creation date

2023-04-28

Usage metrics

    Scholarly Works

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC