RMIT University
Browse

Robust blind identification of room acoustic channels in symmetric alpha-stable distributed noise environments

journal contribution
posted on 2024-11-01, 17:08 authored by Hongsen He, Jing Lu, Jingdong Chen, Xiaojun Qiu, Jacob Benesty
Blind multichannel identification is generally sensitive to background noise. Although there have been some efforts in the literature devoted to improving the robustness of blind multichannel identification with respect to noise, most of those works assume that the noise is Gaussian distributed, which is often not valid in real room acoustic environments. This paper deals with the more practical scenario where the noise is not Gaussian. To improve the robustness of blind multichannel identification to non-Gaussian noise, a robust normalized multichannel frequency-domain least-mean M-estimate algorithm is developed. Unlike the traditional approaches that use the squared error as the cost function, the proposed algorithm uses an M-estimator to form the cost function, which is shown to be immune to non-Gaussian noise with a symmetric α-stable distribution. Experiments based on the identification of a single-input/multiple-output acoustic system demonstrate the robustness of the proposed algorithm.

History

Journal

Journal of the Acoustical Society of America

Volume

136

Issue

2

Start page

693

End page

704

Total pages

12

Publisher

American Institute of Physics

Place published

United States

Language

English

Copyright

© 2014 Acoustical Society of America

Former Identifier

2006050119

Esploro creation date

2020-06-22

Fedora creation date

2015-01-28