RMIT University
Browse

Simvastatin Efficiently Reduces Levels of Alzheimer’s Amyloid Beta in Yeast

journal contribution
posted on 2024-11-02, 05:08 authored by Sudip Dhakal, Mishal Subhan, Joshua Fraser, Kenneth Gardiner, Ian MacreadieIan Macreadie
A large-scale epidemiology study on statins previously showed that simvastatin was unique among statins in reducing the incidence of dementia. Since amyloid beta (Aβ42) is the protein that is most associated with Alzheimer’s disease, this study has focused on how simvastatin influences the turnover of native Aβ42 and Aβ42 fused with green fluorescent protein (GFP), in the simplest eukaryotic model organism, Saccharomyces cerevisiae. Previous studies have established that yeast constitutively producing Aβ42 fused to GFP offer a convenient means of analyzing yeast cellular responses to Aβ42. Young cells clear the GFP fusion protein and do not have green fluorescence while the older population of cells retains the fusion protein and exhibits green fluorescence, offering a fast and convenient means of studying factors that affect Aβ42 turnover. In this study the proportion of cells having GFP fused to Aβ after exposure to simvastatin, atorvastatin and lovastatin was analyzed by flow cytometry. Simvastatin effectively reduced levels of the cellular Aβ42 protein in a dose-dependent manner. Simvastatin promoted the greatest reduction as compared to the other two statins. A comparison with fluconazole, which targets that same pathway of ergosterol synthesis, suggests that effects on ergosterol synthesis do not account for the reduced amounts of Aβ42 fused to GFP. The levels of native Aβ42 following treated with simvastatin were also examined using a more laborious approach, quantitative MALDI TOF mass spectrometry. Simvastatin efficiently reduced levels of native Aβ42 from the population. This work indicates a novel action of simvastatin in reducing levels of Aβ42 providing new insights into how simvastatin exerts its neuroprotective role. We hypothesize that this reduction may be due to protein clearance.

History

Journal

International Journal of Molecular Sciences

Volume

20

Number

3531

Issue

14

Start page

1

End page

12

Total pages

12

Publisher

MDPIAG

Place published

Switzerland

Language

English

Copyright

© 2019 by the authors. All rights reserved.

Former Identifier

2006094197

Esploro creation date

2020-06-22

Fedora creation date

2019-10-23

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC