RMIT University
Browse

Smoke Movement in a Sloping Subway Tunnel Under Longitudinal Ventilation with Blockage

journal contribution
posted on 2024-11-02, 05:00 authored by Kai Zhu, Yongzheng Yao, Shaogang Zhang, Hui Yang, Ruifang Zhang, Xudong Cheng, Long ShiLong Shi
Critical velocity and smoke back-layering length are two of the determining parameters to the fire risk assessment of subway tunnel. These two parameters of a sloping subway tunnel with train blockage were investigated both experimentally and numerically in this paper. To address the influences of slope, the slopes of 0, 3, 6, 9, 12, 15% in downhill subway tunnel were studied and the height (H) of the tunnel was replaced by the inclined tunnel height ((Formula presented.)). The train model with a dimension of 2 m (length) × 0.3 m (width) × 0.38 m (height) was also chosen in simulations and experiments for the tunnel blockage. Thenceforward, 30 reduced-scale experimental and 150 numerical scenarios were analyzed to predict the critical velocity and smoke back-layering length in various sloping subway tunnels. Six different heat release rates including 5.58, 11.17, 16.67, 22.35, 27.94, and 33.52 kW were considered in the experiments and five different heat release rates including 2.79, 5.58, 8.38, 11.17 and 16.67 kW were considered in the simulations. Based on the comparison in the horizontal tunnel, numerical results were quite consistent with the experiments. The results showed that train blockage influenced the smoke back-layering length, and the critical velocity increases with the tunnel slope. Finally, empirical models were developed to predict the critical velocity and smoke back-layering length in a sloping subway tunnel with train blockage.

History

Journal

Fire Technology

Volume

53

Issue

6

Start page

1985

End page

2006

Total pages

22

Publisher

Springer

Place published

United States

Language

English

Copyright

© 2017 Springer Science and Busines Media, LLC.

Former Identifier

2006076052

Esploro creation date

2020-06-22

Fedora creation date

2018-09-21

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC