RMIT University
Browse

Stability of n-dimensional linear systems with multi-delay and application to synchronization

journal contribution
posted on 2024-11-01, 09:32 authored by Weihua Deng, Jinhu Lu, Changpin Li
This paper further investigates the stability of the n-dimensional linear systems with multiple delays. Using Laplace transform, we introduce a definition of characteristic equation for the n-dimensional linear systems with multiple delays. Moreover, one sufficient condition is attained for the Lyapunov globally asymptotical stability of the general multi-delay linear systems. In particular, our result shows that some uncommensurate linear delays systems have the similar stability criterion as that of the commensurate linear delays systems. This result also generalizes that of Chen and Moore (2002). Finally, this theorem is applied to chaos synchronization of the multi-delay coupled Chua's systems.

History

Journal

Journal of Systems Sciences and Complexity

Volume

19

Issue

2

Start page

149

End page

156

Total pages

8

Publisher

Chinese Academy of Sciences, Institute of Systems Science

Place published

China

Language

English

Copyright

© Springer Science + Business Media, Inc. 2006

Former Identifier

2006024038

Esploro creation date

2020-06-22

Fedora creation date

2011-10-28

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC