RMIT University
Browse

Strategies for neural control of prosthetic limbs: From electrode interfacing to 3D printing

journal contribution
posted on 2024-11-02, 12:32 authored by Catherine Ngan, Robert KapsaRobert Kapsa, Peter Choong
Limb amputation is a major cause of disability in our community, for which motorised prosthetic devices offer a return to function and independence. With the commercialisation and increasing availability of advanced motorised prosthetic technologies, there is a consumer need and clinical drive for intuitive user control. In this context, rapid additive fabrication/prototyping capacities and biofabrication protocols embrace a highly-personalised medicine doctrine that marries specific patient biology and anatomy to high-end prosthetic design, manufacture and functionality. Commercially-available prosthetic models utilise surface electrodes that are limited by their disconnect between mind and device. As such, alternative strategies of mind-prosthetic interfacing have been explored to purposefully drive the prosthetic limb. This review investigates mind to machine interfacing strategies, with a focus on the biological challenges of long-term harnessing of the user's cerebral commands to drive actuation/movement in electronic prostheses. It covers the limitations of skin, peripheral nerve and brain interfacing electrodes, and in particular the challenges of minimising the foreign-body response, as well as a new strategy of grafting muscle onto residual peripheral nerves. In conjunction, this review also investigates the applicability of additive tissue engineering at the nerve-electrode boundary, which has led to pioneering work in neural regeneration and bioelectrode development for applications at the neuroprosthetic interface.

History

Related Materials

  1. 1.
    DOI - Is published in 10.3390/ma12121927
  2. 2.
    ISSN - Is published in 19961944

Journal

Materials

Volume

12

Number

1927

Issue

12

Start page

1

End page

14

Total pages

14

Publisher

MDPIAG

Place published

Switzerland

Language

English

Copyright

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Former Identifier

2006097711

Esploro creation date

2020-06-22

Fedora creation date

2020-04-21

Usage metrics

    Scholarly Works

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC