RMIT University
Browse

Synergistic effect of combination interventions for methicillin-resistant Staphylococcus aureus transmission control in nursing homes: A computation modelling evaluation with heterogeneous contact mixing

journal contribution
posted on 2024-11-02, 23:06 authored by Kwok Hung TangKwok Hung Tang, Kin Kwok, Vivian Wei, Hong Chen, Samuel Wong, Wilson Tam
The endemic threat of methicillin-resistant Staphylococcus aureus (MRSA) in nursing homes poses a serious and escalating challenge to public health administration in infection control. Nursing homes are considered as major reservoirs for MRSA colonization, with considerable high levels of colonization prevalence. We employed a computation model to evaluate effects of three intervention scenarios on MRSA colonization prevalence rate in nursing homes. Simulations were conducted using a deterministic compartmental model featuring heterogeneous contact matrix between residents and health-care workers (HCWs). Contact parameters were derived from a nursing home survey. Three intervention scenarios were simulated: (1) hand-hygiene compliance by HCWs, (2) screening-and-isolation upon admission, and (3) implementing both interventions at the same time. For every 10% reduction in average contamination duration in HCWs, the estimated average reduction in prevalence rate was 1.29 percentage point compared with the prevalence rate before the intervention was implemented. Screening-and-isolation intervention resulted in an average reduction of 19.04 percentage point in prevalence rate (S.D. = 1.58; 95% CI = 18.90-19.18). In intervention scenario 3, synergistic effects were observed when implementing hand-hygiene compliance by HCWs and screening-and-isolation together. Our results provide evidence showing that implementing multiple interventions together has a synergistic effect on colonization prevalence reduction.

History

Journal

Antibiotics

Volume

10

Number

227

Issue

3

Start page

1

End page

12

Total pages

12

Publisher

MDPI

Language

English

Copyright

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Former Identifier

2006121134

Esploro creation date

2023-05-06