RMIT University
Browse

Synergistic mode II delamination toughening of composites using multi-scale carbon-based reinforcements

journal contribution
posted on 2024-11-01, 10:32 authored by Anil Raj Ravindran, Raj LadaniRaj Ladani, Chun Wang, Adrian Mouritz
This paper presents an investigation into the synergistic improvements to the mode II interlaminar fracture toughness of composites using multi-scale carbon reinforcements spanning the nano to millimetre length scales. Varying volume fractions of carbon nanofibres (CNFs) and millimetre-long carbon fibre z-pins were used to increase the mode II delamination resistance of multi-scale reinforced composites. The results reveal that adding CNFs into the epoxy matrix and transversely inserting z-pins creates a synergistic, rather than additive, improvement to the mode II fracture toughness. The magnitude of the synergistic toughening effect depends on the volume contents of both the nanofibres and z-pins, with the measured synergistic improvement to the mode II toughness being up to 26% (i.e. greater than the expected additive toughening contribution from each filler type). A finite element (FE) numerical model has been developed to accurately predict the mode II fracture properties and the synergistic toughening effect exhibited by the multi-scale reinforced epoxy composites.

Funding

Multifunctional Three-Dimensional Non-Crimp Fibre Preforms for Polymer Composites: Innovative High-Value Products for the Australian Textiles Industry

Australian Research Council

Find out more...

History

Journal

Composites Part A: Applied Science and Manufacturing

Volume

117

Start page

103

End page

115

Total pages

13

Publisher

Pergamon

Place published

United Kingdom

Language

English

Copyright

© 2018 Elsevier Ltd.

Former Identifier

2006092985

Esploro creation date

2020-06-22

Fedora creation date

2019-08-06

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC