RMIT University
Browse

Synthesis, Characterization, and Application of BaTiO3 Nanoparticles for Anti-Cancer Activity

journal contribution
posted on 2024-11-02, 22:25 authored by M. Fakhar‑e‑Alam, Samira Saddique, Nazia Hossain, Aamir Shahzad, Inaam Ullah, Amjad Sohail, Muhammad Khan, Malik Saadullah
Barium titanate (BaTiO3) nanoparticles (BTNPs) have been considered as emerging materials in biomedical sector through last decades due to the excellent physicochemical properties such as dielectric and piezoelectric structures, biocompatibility, and nonlinear optical characteristics. In this study, BTNPs were synthesized via the co-precipitation method using barium carbonate and titanium dioxide by stirring for 5 h. Then, it was annealed at 850 °C for 5 h with five different concentrations: 0.2, 0.4, 0.6, 0.8, and 1 g/mL. The structural, morphological, and optical analyses were demonstrated by different characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), Raman, and UV–visible spectroscopy. The perovskite phase of BTNPs, an intense peak at 31.6°, was observed at the lowest concentration (0.2 g/mL), and the average crystalline size was 1.42 nm based on XRD pattern. The results have been justified by SEM and EDX. TGA demonstrated the adequate thermal stability of this material. EDX analysis confirmed the composition of Ti, Ba, and O elements. Raman peaks at 305 cm−1 and 517 cm−1 confirmed the formation of BaTiO3. UV–visible spectra presented that its’ absorbance edge shifted into visible range at 404 nm. Application of BTNPs on breast cancer cell line (MCF-7) presented significant dispersion effect at 0.2, 0.4 and 0.6 g/mL of BaTiO3. A strong toxicity rate of BaTiO3 has been observed against the MCF-7 cell line. Maximum % of cell viability loss, ≅ 57% was recorded at 200 µg/mL of BTNPs, and minimum % of cell viability loss was observed as 19% at 50 µg/mL of BTNPs. The results presented that a higher concentration of BTPNs dosage was more effective in inhibition of breast cancer cells. Therefore, BTNPs can be recommended as a promising nanomaterial for anti-cancer drug discovery.

History

Related Materials

  1. 1.
    DOI - Is published in 10.1007/s10876-022-02346-y
  2. 2.
    ISSN - Is published in 10407278

Journal

Journal of Cluster Science

Start page

1

End page

11

Total pages

11

Publisher

Springer

Place published

United States

Language

English

Copyright

© The Author(s) 2022

Former Identifier

2006120372

Esploro creation date

2023-03-11

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC