The accuracy of the pencil beam convolution and anisotropic analytical algorithms in predicting the dose effects due to attenuation from immobilization devices and large air gaps
journal contribution
posted on 2024-11-01, 05:49authored byAlison Gray, Lynne Oliver, Peter Johnston
When a photon beam passes through the treatment couch or an immobilization device, it may traverse a large air gap (up to 15 cm or more) prior to entering the patient. Previous studies have investigated the ability of various treatment planning systems to calculate the dose immediately beyond small air gaps, typically less than 5 cm thick, such as those within the body. The aim of this study is to investigate the ability of the Eclipse anisotropic analytical algorithm (AAA) and pencil beam convolution (PBC) algorithm to calculate the dose beyond large air gaps. Depth dose data in water for a 6 MV photon beam, cm²10×10² field size, and 100 cm SSD were measured beyond a range of air gaps (1-15 cm). The thickness of the water equivalent material positioned before the air gap ranged from 0.2 to 4 cm. Dose was calculated with the Eclipse PBC algorithm and AAA. The scattered and primary dose components were calculated from the measurements. The measured results indicate that as the air gap increases (from 1 to 15 cm) the dose reduces at the water surface and that beyond an air gap a secondary buildup region is required to re-establish electronic equilibrium.