RMIT University
Browse

The determinants of hydrophobic mismatch response for transmembrane helices

journal contribution
posted on 2024-11-01, 12:52 authored by Armando de Jesus, Toby AllenToby Allen
Hydrophobic mismatch arises from a difference in the hydrophobic thickness of a lipid membrane and a transmembrane protein segment, and is thought to play an important role in the folding, stability and function of membrane proteins. We have investigated the possible adaptations that lipid bilayers and transmembrane α-helices undergo in response to mismatch, using fully-atomistic molecular dynamics simulations totaling 1.4 μs. We have created 25 different tryptophan- alanine-leucine transmembrane α-helical peptide systems, each composed of a hydrophobic alanine-leucine stretch, flanked by 1-4 tryptophan side chains, as well as the β-helical peptide dimer, gramicidin A. Membrane responses to mismatch include changes in local bilayer thickness and lipid order, varying systematically with peptide length. Adding more flanking tryptophan side chains led to an increase in bilayer thinning for negatively mismatched peptides, though it was also associated with a spreading of the bilayer interface. Peptide tilting, bending and stretching were systematic, with tilting dominating the responses, with values of up to ~ 45° for the most positively mismatched peptides. Peptide responses were modulated by the number of tryptophan side chains due to their anchoring roles and distributions around the helices. Potential of mean force calculations for local membrane thickness changes, helix tilting, bending and stretching revealed that membrane deformation is the least energetically costly of all mismatch responses, except for positively mismatched peptides where helix tilting also contributes substantially. This comparison of energetic driving forces of mismatch responses allows for deeper insight into protein stability and conformational changes in lipid membranes.

History

Journal

Biochimica et Biophysica Acta

Volume

1828

Issue

2

Start page

851

End page

863

Total pages

13

Publisher

Elsevier

Place published

Netherlands

Language

English

Copyright

© 2012 Elsevier B.V. All rights reserved.

Former Identifier

2006038229

Esploro creation date

2020-06-22

Fedora creation date

2013-01-21

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC