RMIT University
Browse

The dominant nature of Herzberg–Teller terms in the photophysical description of naphthalene compared to anthracene and tetracene

Download (2.06 MB)
Version 2 2025-01-09, 00:58
Version 1 2024-11-02, 22:10
journal contribution
posted on 2025-01-09, 00:58 authored by Anjay Manian, Salvy RussoSalvy Russo
The first order and second order corrected photoluminescence quantum yields are computed and compared to experiment for naphthalene in this manuscript discussing negative results. Results for anthracene and tetracene are recalled from previous work (Manian et al. in J Chem Phys 155:054108, 2021), and the results for all three polyacenes are juxtaposed to each other. While at the Franck–Condon point, each of the three noted polyacenes were found to possess a quantum yield near unity. Following the consideration of Herzberg–Teller effects, quantum yields stabilised for anthracene and tetracene to 0.19 and 0.08, respectively. Conversely, the second order corrected quantum yield for naphthalene was found to be 0.91. Analysis of this result showed that while the predicted non-radiative pathways correlate well with what should be expected, the approximation used to calculate second order corrected fluorescence, which yielded very positive results for many other molecular systems, here is unable to account for strong second order contributions, resulting in a grossly overestimated rate of fluorescence. However, substitution of an experimental radiative rate results in a quantum yield of 0.33. This work extols the importance of Herzberg–Teller terms in photophysical descriptions of chromophores, and highlights those cases in which a treatment beyond the above approximation is required.<p></p>

Funding

ARC Centre of Excellence in Exciton Science

Australian Research Council

Find out more...

History

Related Materials

  1. 1.
    DOI - Is published in 10.1038/s41598-022-24081-0
  2. 2.
    ISSN - Is published in 20452322

Journal

Scientific Reports

Volume

12

Number

21481

Issue

1

Start page

1

End page

12

Total pages

12

Publisher

Nature Publishing Group

Place published

United Kingdom

Language

English

Copyright

© The Author(s) 2022. Ths article is licensed under a Creative Commons Attribution 4.0 International License.

Former Identifier

2006119988

Esploro creation date

2023-01-22

Usage metrics

    Scholarly Works

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC