RMIT University
Browse

Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators

journal contribution
posted on 2024-11-01, 06:33 authored by Jie YangJie Yang, H Xiang
This paper investigates the static bending, free vibration, and dynamic response of monomorph, bimorph, and multimorph actuators made of functionally graded piezoelectric materials (FGPMs) under a combined thermal-electro- mechanical load by using the Timoshenko beam theory. It is assumed that all of the material properties of the actuator, except for Poisson's ratio, are position dependent due to a continuous variation in material composition through the thickness direction. Theoretical formulations are derived by employing Hamilton's principle and include the effect of transverse shear deformation and axial and rotary inertias. The governing differential equations are then solved using the differential quadrature method to determine the important performance indices, such as deflection, reaction force, natural frequencies, and dynamic response of various FGPM actuators. A comprehensive parametric study is conducted to show the influence of shear deformation, temperature rise, material composition, slenderness ratio, end support, and total number of layers on the thermo-electro-mechanical characteristics. It is found that FGPM monomorph actuators exhibit the so-called 'non-intermediate' behavior under an applied electric field.

History

Journal

Smart Materials & Structures

Volume

16

Issue

3

Start page

784

End page

797

Total pages

14

Publisher

Institute of Physics Publishing Ltd.

Place published

United Kingdom

Language

English

Former Identifier

2006014437

Esploro creation date

2020-06-22

Fedora creation date

2010-12-06

Usage metrics

    Scholarly Works

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC