RMIT University
Browse

Triple Collocation Analysis of Satellite Precipitation Estimates over Australia

journal contribution
posted on 2024-11-02, 20:34 authored by Ashley Wild, Zhi-Weng Chua, Yuriy KuleshovYuriy Kuleshov
The validation of precipitation estimates is necessary for the selection of the most appropri-ate dataset, as well as for having confidence in its selection. Traditional validation against gauges or radars is much less effective when the quality of these references (which are considered the ‘truth’) degrades, such as in areas of poor coverage. In scenarios like this where the ‘truth’ is unreliable or unknown, triple collocation analysis (TCA) facilitates a relative ranking of independent datasets based on their similarity to each other. TCA has been successfully employed for precipitation error estimation in earlier studies, but a thorough evaluation of its effectiveness over Australia has not been completed before. This study assesses the use of TCA for precipitation verification over Australia using satellite datasets in combination with reanalysis data (ERA5) and rain gauge data (AGCD) on a monthly timescale from 2001 to 2020. Both the additive and multiplicative models for TCA are evaluated. These results are compared against the traditional verification method using gauge data and Multi-Source Weighted-Ensemble Precipitation (MSWEP) as references. AGCD (KGE = 0.861), CMORPH-BLD (0.835), CHIRPS (0.743), and GSMaP (0.708) were respectively found to have the highest KGE when compared to MSWEP. The ranking of the datasets, as well as the relative differ-ence in performance amongst the datasets as derived from TCA, can largely be reconciled with the traditional verification methods, illustrating that TCA is a valid verification method for precipitation over Australia. Additionally, the additive model was less prone to outliers and provided a spatial pattern that was more consistent with the traditional methods.

History

Journal

Remote Sensing

Volume

14

Number

2724

Issue

11

Start page

1

End page

15

Total pages

15

Publisher

MDPI

Place published

Switzerland

Language

English

Copyright

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Former Identifier

2006116754

Esploro creation date

2022-10-26

Usage metrics

    Scholarly Works

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC