RMIT University
Browse

Ultra-bright green carbon dots with excitation-independent fluorescence for bioimaging

journal contribution
posted on 2024-11-02, 22:41 authored by Amandeep Singh, Zhi Qu, Astha Sharma, Mandeep Singh, Brian Tse, Kostya Ostrikov, Amirali Popat, Prashant Sonar, Tushar Kumeria
Current and future diagnostics urgently need imaging agents that are non-toxic and superior to clinically used small molecule dyes. Herein, we have developed luminescent green light-emitting carbon dots (GCDs) via a single-step hydrothermal reaction using a low-cost chemical precursor, p-toluenesulfonic acid. The GCDs exhibit excitation-independent fluorescence (FL) emission with the photoluminescence quantum yield of 70% and no FL quenching up to 1.25 mg/mL. The GCDs exhibit negligible cytotoxicity up to 250 µg/mL concentration in RAW 264.7 cells. Interestingly, GCDs exhibit an excitation-independent and concentration-dependent fluorescence emission behaviour. In vitro, the peak emission was obtained at 520 nm using the excitation at 430 nm. Whereas FL intensity increased with increasing concentration up to 1.25 mg/mL and a sharp decrease in FL intensity is observed upon further increasing the concentration of GCDs. Upon subcutaneously injecting the GCDs into a euthanized mouse, a similar concentration-dependent FL behaviour is evident. Background autofluorescence hinders the use of the GCDs at 420 nm excitation, however, a strong FL emission at 520 nm can be obtained by exciting subcutaneously injected GCDs at 465 nm—demonstrating excitation-independent emission characteristics. The above results indicate the potential of the non-toxic, low-cost carbon dots for diverse bioimaging applications. Graphical abstract: Ultra-bright green-emitting carbon dots (GCDs) with photoluminescence quantum yield of 70% were synthesized using p-toluenesulfonic acid and ethylenediamine as precursors. The GCDs were subcutaneously injected into fresh mouse cadaver for fluorescence (FL)bioimaging, showing dose-dependent FL intensity behaviour.

History

Related Materials

  1. 1.
    DOI - Is published in 10.1007/s40097-022-00501-5
  2. 2.
    ISSN - Is published in 20089244

Journal

Journal of Nanostructure in Chemistry

Volume

13

Start page

377

End page

387

Total pages

11

Publisher

Springer

Place published

Germany

Language

English

Copyright

© The Author(s) 2022

Former Identifier

2006120459

Esploro creation date

2023-10-11

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC