RMIT University
Browse

Using a Motion Sensor to Categorize Nonspecific Low Back Pain Patients: A Machine Learning Approach

journal contribution
posted on 2024-11-02, 16:38 authored by Masoud Abdollahi, Sajad Ashouri, Mohsen Abedi, Nasibeh Azadeh-Fard, Mohamad Parnianpour, Kinda Khalaf, Ehsan Rashedi
Nonspecific low back pain (NSLBP) constitutes a critical health challenge that impacts millions of people worldwide with devastating health and socioeconomic consequences. In today's clinical settings, practitioners continue to follow conventional guidelines to categorize NSLBP patients based on subjective approaches, such as the STarT Back Screening Tool (SBST). This study aimed to develop a sensor-based machine learning model to classify NSLBP patients into different subgroups according to quantitative kinematic data, i.e., trunk motion and balance-related measures, in conjunction with STarT output. Specifically, inertial measurement units (IMU) were attached to the trunks of ninety-four patients while they performed repetitive trunk flexion/extension movements on a balance board at self-selected pace. Machine learning algorithms (support vector machine (SVM) and multi-layer perceptron (MLP)) were implemented for model development, and SBST results were used as ground truth. The results demonstrated that kinematic data could successfully be used to categorize patients into two main groups: high vs. low-medium risk. Accuracy levels of similar to 75% and 60% were achieved for SVM and MLP, respectively. Additionally, among a range of variables detailed herein, time-scaled IMU signals yielded the highest accuracy levels (i.e., similar to 75%). Our findings support the improvement and use of wearable systems in developing diagnostic and prognostic tools for various healthcare applications. This can facilitate development of an improved, cost-effective quantitative NSLBP assessment tool in clinical and home settings towards effective personalized rehabilitation.

History

Journal

Sensors

Volume

20

Number

3600

Issue

12

Start page

1

End page

16

Total pages

16

Publisher

MDPI AG

Place published

Switzerland

Language

English

Copyright

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Former Identifier

2006107264

Esploro creation date

2022-11-20

Usage metrics

    Scholarly Works

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC