Student performance is a critical factor in determining a university’s reputation because it has a negative effect on student retention. Students who do not perform well in a course are more likely to drop out from their programmes before graduating. Many students who enrol in Computing Science programmes struggle to find success because it is considered a difficult discipline. In this study, a sample of 918 observations were selected containing demographic and academic information about students enrolled in a first-year undergraduate Computing Science course at a university. Classification algorithms such as Decision Tree, Random Forest, Naïve Bayes and Support Vector Machine were used to build predictive models to determine whether a student will pass or fail the course. The results showed the Random Forest algorithms are capable of producing better predictive performance compared with traditional Decision Tree algorithms.