RMIT University
Browse

Varietal Differentiation of Grape Juice Based on the Analysis of Near- and Mid-infrared Spectral Data

journal contribution
posted on 2024-11-02, 09:29 authored by Daniel Cozzolino, Wies Cynkar, Nevil Shah, Paul Smith
The aim of this study was to evaluate the usefulness of visible (VIS), near-infrared reflectance (NIR) and mid-infrared (MIR) spectroscopy combined with pattern recognition methods as tools to differentiate grape juice samples from commercial Australian Chardonnay (n = 121) and Riesling (n = 91) varieties. Principal component analysis (PCA), partial least squares discriminant analysis and linear discriminant analysis (LDA) were applied to classified grape juice samples according to variety based on both NIR and MIR spectra using full cross-validation (leave-one-out) as a validation method. Overall, LDA models correctly classify 86% and 80% of the grape juice samples according to variety using MIR and VIS-NIR, respectively. The results from this study demonstrated that spectral differences exist between the juice samples from different varietal origins and confirmed that the infrared (IR) spectrum contains information able to discriminate among samples. Furthermore, analysis and interpretation of the eigenvectors from the PCA models developed verified that the IR spectrum of the grape juice has enough information to allow the prediction of the variety. These results also suggested that IR spectroscopy coupled with pattern recognition methods holds the necessary information for a successful classification of juice samples of different varieties.

History

Journal

Food Analytical Methods

Volume

5

Issue

3

Start page

381

End page

387

Total pages

7

Publisher

Springer New York LLC

Place published

United States

Language

English

Copyright

© Springer Science+Business Media, LLC 2011

Former Identifier

2006089720

Esploro creation date

2020-06-22

Fedora creation date

2019-04-30

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC