RMIT University
Browse

Walsh-Hadamard based 3D steganography for protecting sensitive information in point-of-care

journal contribution
posted on 2024-11-02, 02:45 authored by Alsharif Mohammed Alsharif Abuadbba, Ibrahim KhalilIbrahim Khalil
Remote points-of-care has recently had a lot of attention for their advantages such as saving lives and cost reduction. The transmitted streams usually contain (1) normal biomedical signals (e.g. ECG) and (2) highly private information (e.g. patient identity). Despite the obvious advantages, the primary concerns are privacy and authenticity of the transferred data. Therefore, this paper introduces a novel steganographic mechanism that ensures (1) strong privacy preservation of private information by random concealing inside the transferred signals employing a key, and (2) evidence of originality for the biomedical signals. To maximize hiding, Fast Walsh-Hadamard Transform is utilized to transform the signals into a group of coefficients. To ensure the lowest distortion, only less-significant values of coefficients are employed. To strengthen security, the key is utilized in a 3-Dimensional random coefficients' reform to produce a 3D order employed in the concealing process. The resultant distortion has been thoroughly measured in all stages. After extensive experiments on three types of signals, it has been proven that the algorithm has little impact on the genuine signals (< 1 %). The security evaluation also confirms that unlawful retrieval of the hidden information within rational time is mightily improbable.

History

Journal

IEEE Transactions on Biomedical Engineering

Volume

64

Issue

9

Start page

2186

End page

2195

Total pages

10

Publisher

IEEE

Place published

United States

Language

English

Copyright

© 2016 IEEE

Former Identifier

2006069430

Esploro creation date

2020-06-22

Fedora creation date

2017-06-07

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC