RMIT University
Browse

ZnO nanoparticles and organic chemical UV-filters are equally well tolerated by human immune cells

journal contribution
posted on 2024-11-02, 01:28 authored by Sean O'Keefe, Bryce Feltis, Terrence PivaTerrence Piva, Terence Turney, Paul WrightPaul Wright
An important part of assessing the toxic potential of nanoparticles for specific applications should be the direct comparison of biological activities with those of alternative materials for the same application. Nanoparticulate inorganic ultraviolet (UV) filters, such as zinc oxide (ZnO), are commonly incorporated into transparent sunscreen and cosmetic formulations. However, concerns have been raised about potential unwanted effects, despite their negligible skin penetration and inherent advantages over organic chemical UV-filters. To provide useful application-relevant assessments of their potential hazard with/without UVA co-exposure, we directly compared cytotoxic and immune response profiles of human THP-1 monocytic cells to ZnO nanoparticles (30 nm) with bulk ZnO particulates (200 nm) and five conventional organic chemical UV-filters - butylmethoxydibenzoylmethane (avobenzone), octylmethoxycinnamate, octylsalicylate, homosalate and 4-methylbenzylidene camphor. High exposure concentrations of both organic and particulate UV-filters were required to cause cytotoxicity in monocyte and macrophage cultures after 24 h. Co-exposure with UVA (6.7 J/cm2) did not alter cytotoxicity profiles. Particle surface area-based dose responses showed that ZnO NPs were better tolerated than bulk ZnO. Organic and particulate UV-filters increased apoptosis at similar doses. Only particulates increased the generation of reactive oxygen species. Interleukin-8 (IL-8) release was increased by all particulates, avobenzone, homosalate and octylsalicylate. IL-1β release was only increased in macrophages by exposure to avobenzone and homosalate. In conclusion, direct effects were caused in monocytes and macrophages at similar concentrations of both organic UV-filters and ZnO nanoparticulates - indicating that their intrinsic cytotoxicity is similar. With their lower skin penetration, ZnO nanoparticles are expected to have lower bioactivity when used in sunscreens.

Funding

Immunotoxic effects of engineered nanomaterials used in the Australian workplace

National Health and Medical Research Council

Find out more...

History

Journal

Nanotoxicology

Volume

10

Issue

9

Start page

1287

End page

1296

Total pages

10

Publisher

Taylor and Francis

Place published

United Kingdom

Language

English

Copyright

© 2016 Informa

Former Identifier

2006066550

Esploro creation date

2020-06-22

Fedora creation date

2016-09-19

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC