RMIT University
Browse

Effective task assignment strategies for distributed systems under highly variable workloads

Download (1.22 MB)
thesis
posted on 2024-11-23, 00:09 authored by James Broberg
Heavy-tailed workload distributions are commonly experienced in many areas of distributed computing. Such workloads are highly variable, where a small number of very large tasks make up a large proportion of the workload, making the load very hard to distribute effectively. Traditional task assignment policies are ineffective under these conditions as they were formulated based on the assumption of an exponentially distributed workload. Size-based task assignment policies have been proposed to handle heavy-tailed workloads, but their applications are limited by their static nature and assumption of prior knowledge of a task's service requirement. This thesis analyses existing approaches to load distribution under heavy-tailed workloads, and presents a new generalised task assignment policy that significantly improves performance for many distributed applications, by intelligently addressing the negative effects on performance that highly variable workloads cause. Many problems associated with the modelling and optimisations of systems under highly variable workloads were then addressed by a novel technique that approximated these workloads with simpler mathematical representations, without losing any of their pertinent original properties. Finally, we obtain advance queuing metrics (such as the variance of key measurements like waiting time and slowdown that are difficult to obtain analytically) through rigorous simulation.<br>

History

Degree Type

Doctorate by Research

Imprint Date

2006-01-01

School name

School of Science, RMIT University

Former Identifier

9921861272501341

Open access

  • Yes

Usage metrics

    Theses

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC