RMIT University
Browse

Investigation of phytoplankton dynamics using time-series analysis of biophysical parameters in Gippsland Lakes, South-eastern Australia

Download (9.75 MB)
thesis
posted on 2024-11-23, 05:10 authored by Neha Khanna
There is a need for ecological modelling to help understand the dynamics in ecological systems, and thus aid management decisions to maintain or improve the quality of the ecological systems. This research focuses on non linear statistical modelling of observations from an estuarine system, Gippsland Lakes, on the south-eastern coast of Australia. Feed forward neural networks are used to model chlorophyll time series from a fixed monitoring station at Point King.

The research proposes a systematic approach to modelling in ecology using feed forward neural networks, to ensure: (a) that results are reliable, (b) to improve the understanding of dynamics in the ecological system, and (c) to obtain a prediction, if possible. An objective filtering algorithm to enable modelling is presented. Sensitivity analysis techniques are compared to select the most appropriate technique for ecological models.

The research generated a chronological profile of relationships between biophysical parameters and chlorophyll level for different seasons. A sensitivity analysis of the models was used to understand how the significance of the biophysical parameters changes as the time difference between the input and predicted value changes.

The results show that filtering improves modelling without introducing any noticeable bias. Partial derivative method is found to be the most appropriate technique for sensitivity analysis of ecological feed forward neural networks models. Feed forward neural networks show potential for prediction when modelled on an appropriate time series. Feed forward neural networks also show capability to increase understanding of the ecological environment. In this research, it can be seen that vertical gradient and temperature are important for chlorophyll levels at Point King at time scales from a few hours to a few days. The importance of chlorophyll level at any time to chlorophyll levels in the future reduces as the time difference between them increases.

History

Degree Type

Doctorate by Research

Imprint Date

2007-01-01

School name

School of Engineering, RMIT University

Former Identifier

9921861458401341

Open access

  • Yes

Usage metrics

    Theses

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC